Pure Water Systems - Make the Most of Your Resources
Do you want to simplify your daily lab work and obtain consistently high-quality results? Our lab water systems have just what it takes to let you do your best – day in, day out!
Request a Demo or More Info
Quickly find Pure Water Purification products by searching by category or filtering by attributes.
The ultimate in reliable electronic deionization
The Arium® Advance EDI reliably delivers water of consistently high Type 2 water quality of up to 15 megohms*cm at a rate of 5 L/hr or 10L/hr. Equipped with 3 purification stages, the system efficiently removes ions, bacteria, organic impurities and other contaminants from feed water from the tap.
Protect your Type 2 water with our unique Bagtank technology! Stored in the integrated Arium® Bagtank, purified Type 2 water will be kept from contamination until you dispense it for further use in your specific application.
Unequaled iJust function for efficient use of your water. The iJust function additionally built into the lab water system automatically optimizes the usage and quality of your purified water, while helping you conserve your valuable water resources.
Discover Arium® Advance
Gain time by using the unique Arium® Bagtank!
The revolutionary Arium® Bagtank stores Type 2 purified water reliably in your choice of 20-, 50- or 100-liter disposable Arium® Bags and protects your pure water with its built-in filter system from secondary contamination.
Moreover, unlike typical laboratory water storage tanks, the disposable Arium® Bag is easy to exchange in less than 5 minutes.
Specially designed for the pharmaceutical industry, this bag is made of high-quality S71 material and provides optimal storage conditions, thus ensuring consistent Type 2 water quality over the long term.
Discover Arium® Bagtanks
Get answers to any questions you have about Sartorius lab water products.
A flexible solution for dispensing pure and ultrapure water
This Sartorius eBook is an informative guide for choosing the right water purification system for your laboratory.
Consistent, high water quality is vital to ensure data reproducibility and avoid time-consuming repeat analyses. Learn more in this webinar!
This eBook discusses various topics about the complexities of biopharmaceutical analysis. Presented in partnership with BioPharm International
Secure and optimize your lab water equipment operation with installation, qualification, calibration, and regular maintenance.
ASTM (American Society of Testing and Materials) is the most commonly used standard for laboratory water. ASTM lab water is divided into four categories, with the upper tiers being Type 1 (ultrapure) and Type 2 (pure). Pure water can be produced by distillation, or other alternative technologies, to achieve a conductivity of < 1 µS/cm (or resistivity which is > 1 MΩ*cm) at 25 °C. Other quality parameters are TOC (Total Organic Carbon, 50 µg/L), sodium (5 µg/L), chloride (5 µg/L) and silica (3 µg/L). Deionization technology and reverse osmosis are examples of alternative technologies that can be used to produce ASTM Type 2 water.
You can usually find the feed water specifications in the water purification system’s technical information such as the datasheet. A pure water purification system can generally be connected directly to tap water, as water that is good for drinking is typically good as feed water. However, if it does not meet specifications and has a high concentration of e.g. calcium carbonate (CaCO3), iron or silica particles, organics or bacteria - an extra pretreatment step is recommended to avoid calcification and clogging. Reverse osmosis, activated carbon and 5 µm depth filters are pretreatment examples that are generally used either individually or in combinations. CO2 value is also important when using an EDI module, as it impacts regeneration capabilities of the EDI module and can pass through the semipermeable membrane in the RO module. Therefore, it is important that the feed water CO2 value is below 40 ppm.
A deionization system provides consistent removal of charged molecules, which would otherwise cause interference with reagents, protein-protein interactions, inhibition of polymerase activities in samples, buffers etc. However, pure deionization systems without additional pretreatment techniques (e.g. Membrane filtration) do not remove organic material, particles or bacteria. Further processing could therefore have a positive impact on downstream process or application.
It is important to choose the correct quality of water for your applications. While too low quality may affect your experiments or analyses, too high quality may be unnecessarily expensive. Applications such as media and buffer preparation, AAS and photometry analysis, which are less critical or sensitive, are suitable for pure water. Pure water can also be used for general laboratory tasks such as rinsing, or as feed water for water-consuming systems (e.g. washing machines, autoclaves or Type 1 water purification systems).
With water purification, the terms deionization and demineralization are often used interchangeably to mean the use of ion exchange technology. Most minerals in water have a charge and are therefore ions. However, deionization is the process of removing ions, while demineralization removes minerals. The deionization process is typically based on artificially produced ion exchange resin, which consists of both negatively and positively charged particles. As the ions in the water come into contact with the resin, they are bound to the resin with the help of ion exchange and removed from the feed water. The deionization process does not, however, remove neutral molecules or particles. For this, an internal or external pretreatment step with activated carbon, depth filters or RO modules - or a combination of the technologies - is required.
DI (deionization) and EDI (electrodeionization) are both ion exchange technologies used in water purification systems. The term “deionization” also describes the process of deionizing (removing ions from) the water in general. The biggest difference between DI and EDI is that EDI additionally uses electricity to remove ions supported by semipermeable membranes, while DI cartridges use only resin. The electrical current in the EDI also regenerates the resin automatically , while resin used in a DI cartridge is either exchanged or regenerated manually with chemicals.
The main difference between ASTM Type 2 (pure) and ASTM Type 1 (ultrapure) water is conductivity. For ultrapure water, the conductivity is a maximum of 0,055 µS/cm. For pure water, it is maximum 1 µS/cm. Other quality parameters that differ are sodium and chloride concentrations, which have a maximum level of 1 µg/L and 5 µg/L, respectively. To produce ultrapure water, you need a DI cartridge, designed for producing ultrapure water, for polishing. In comparison, to produce pure water you can use either a DI cartridge or an EDI module suitable for producing pure water. Depending on water purification system and feed water, a pretreatment step may be needed.
The main difference between ASTM Type 2 and RO (Reverse Osmosis) water is conductivity. ASTM Type 2 water has a maximum conductivity of 1 µS/cm, while for RO water it is usually higher. The quality parameters, which except for conductivity include TOC, sodium, chloride and silica, must be met to be categorized as ASTM Type 2, while RO water does not have any set values. The quality of RO water depends completely on feed water, as the RO module only removes a certain percentage based on the rejection rate of the module. Therefore, RO water is not consistent but may vary depending on factors like region and season. Reverse osmosis is commonly used as a pretreatment step because of its excellent and broad retention capabilities, as it filters out impurities based on size. Deionization technology, which is commonly used for production of ASTM Type 2 water, only binds ions using ion exchange. Therefore, a pretreatment step is highly recommended to remove other impurities, such as organics and bacteria.
For producing pure water, a system with deionization technology - either DI or EDI - is generally used. It is very common to have a pretreatment step of a reverse osmosis module prior to the deionization cartridge. This is especially recommended when the pure water is used as feed water for producing ultrapure water. Additionally, there can be steps consisting of activated carbon and/or depth filters, depending on quality of the feed water. As membrane filtration reduces the flow rate - RO and EDI technology both use membrane filtration - a storage tank, either internal or external, is generally used to compensate the flow rate. From the storage tank, the water can then be directed as feed water to instruments or to a dispensing unit.
Purification methods based on membrane filtration limit the flow rate to such an extent that they usually require a storage tank in laboratory environments. As membrane filtration (EDI and reverse osmosis) is commonly used to produce pure water a storage tank is then needed. The use of a storage tank allows water to be dispensed at a higher flow rate and pressure, which is needed when used as feed water for example. If the pure water is produced with a DI cartridge only, then a storage tank is not necessarily needed as the DI cartridge does not use membrane filtration. However, to only use a DI cartridge removes only ions and e.g. no particles, organics or bacteria and the cartridge is at risk for clogging and calcification. Therefore, a pretreatment with RO module is highly recommended and therefore also the use of a storage tank.
We're offering an incredible deal — Providing the ultimate flexibility and an excellent cost-benefit ratio with device configurations specially tailored to your applications.
But hurry, this offer ends June 30th 2024.
Please select your country so we can show you products that are available for you.
The content of our website is always available in English and partly in other languages. Choose your preferred language and we will show you the content in that language, if available.