

www.sartorius.com/umetrics

SIMCA-Q
Embedded solution

Interface Description SIMCA-Q

This document gives an overview of the functions and objects found in the C and COM interfaces of
SIMCA®-Q embedded solution. For a general description of SIMCA-Q see ‘SIMCA-Q 18 User
Guide.pdf’.

The C Interface

Structure When Doing Predictions
The simple structure of SIMCA-Q for doing predictions can be illustrated as follows:

12 May 2023

Project

Dataset Model

PreparePrediction

Prediction

www.sartorius.com/umetrics

Structure When Doing Batch Predictions

Project

Dataset BatchModel

Model

PrepareBatchPrediction

BatchPrediction

Prediction

www.sartorius.com/umetrics

Structure When Creating Models

Functions
The functions found in the C Interface can be divided into different categories where one category corresponds to
one or several objects.

General
General objects and functions are functionality that is not necessary connected with a specific project, but apply to
SIMCA-Q. Some of the more common ones are:

• BoolVector

• ComponentVector

• FloatMatrix

• FloatVector

• IntVector

• StringMatrix

• StringVector

• VariableVector

• Variable

• VectorData

Project
The Project object represents a SIMCA-Q project. From this object, such things as getting project options, reading
project-, data- and model information are retrieved.

Import

Project

Dataset Model

PreparePrediction

Prediction

Workset Filter

www.sartorius.com/umetrics

Dataset
The Dataset object represents a dataset, a spreadsheet-like object in a project. The functions in Dataset enable
retrieval of dataset information, like variable- and observation IDs and observation data.

BatchModel
The BatchModel object contains the BEM (Batch Evolution Model) and the BLM (Batch Level Model) built on
datasets created from that BEM.

Model
The Model object represents a model in a SIMCA-Q project. From the Model object, all model specific data are
retrieved. Functions like getting the scores, DModX, the name of the model, number of components and starting a
prediction is contained in this object. Also functions to modify the model are available from the Model object in
SIMCA-Q, for example, auto fit, changing model type, model name etc.

Filter
From the Filter object creation of a spectral or time series filter is performed. This includes specifying the filter type
and all available filter settings.

Import
The Import object is used to import new data to a new or existing project. Specifying observations, variables and
data is done with the Import object.

Workset
Before creating a model, a Workset object must be retrieved were scaling, transform and lagged variables are
specified.

PreparePrediction
The PreparePrediction object represents a collection of data that is used in a prediction. It has functions for getting
the variables required for the prediction, setting quantitative and qualitative data/lags that should be used for
prediction.

PrepareBatchPrediction
The PrepareBatchPrediction object contains similar functions as PreparePrediction, but is constructed for a batch
prediction. Data for each phase and batch conditions are set through this object.

BatchPrediction
The Batch Prediction object holds the predictions for all batch evolution and batch level models.

Prediction
The Prediction object represents a prediction made on some data and a model. The functions in this object retrieve
predicted data from the prediction.

Prefix
All functions in the C-interface files have a SQ_ prefix.

EzQ
This is an example of how to write a high-level C++ interface of the prediction part of SIMCA-Q providing a class to
use SIMCA-Q in just a few lines of code. This can easily be extended and modified according to user needs. This
class can be found in the C++ sample directory, that can be downloaded from the website, and the sample displays
how to use this class.

The COM Interface
SIMCA-Q has beside the C-interface a COM-interface. The COM-interface is a dual interface, i.e. it is both a raw
COM interface and a Dispinterface. The version independent program ID for SIMCA-Q is Umetrics.SIMCAQ, the
program ID for SIMCA-Q 18 is Umetrics.SIMCAQ.6 and the interface is ISIMCAQ. The type library, with namespace
SIMCAQLib, is defined in SIMCAQ.tlb.

www.sartorius.com/umetrics

Interfaces
The COM interface in SIMCA-Q consists of several interfaces, with ISIMCAQ as the base interface. From the
ISIMCAQ interface/coclass some other interfaces/coclasses can be constructed. The only way to create another
coclass/interface pointer other than ISIMCAQ is by going through ISIMCAQ or some other interface in SIMCA-Q. If
an instance, other than an ISIMCAQ like IProject or IModel, is created directly it will be an invalid instance and
SIMCA-Q will probably behave very strange.

When one interface derives/inherits another interface, the first interface is called the base interface and the other
interface is called the derived or extended interface. All functions in a base interface also exist and are valid in the
extended interface.

When one interface dispatches another interface, it means the other interface is returned from some function call in
the first interface. The first interface creates the other interface (e.g. retrieving an IProject object from the ISIMCAQ
object). In the description of the interfaces below, the data structure interfaces are left out from the Dispatches
section.

• BOOL (b as in boolean; like bIsX).
• long (n as in number; like nIndex).
• BSTR (str as in string; like strName).
• float (f as in float; like fDeltaX).
• A SIMCA-Q definition (e as in enum; like ePCA_X).
• An IDispatch pointer which is an Interface pointer (I as in interface; IProject).
• A pointer to any of the above types (p as in pointer; like pfMax).

A pointer is always used on the out parameter and when there is an interface parameter. When
there is an out IDispatch/interface pointer there will be pp (pointer to pointer), like ppIProject.

How all these pointers and pointer to pointers affect you when working with the COM interface depends on the
programming language you are using. Many modern and easy to use programming languages marshals the pointer
arguments automatically when calling the interface functions, which means that you don’t need to care about how
to format your arguments to suite the function. The pointer can in these cases be referred as a reference to the data
type it points at, a reference many programming languages automatically generate.

ISIMCAQ
ISIMCAQ is the base program interface for SIMCA-Q. This interface has common functions like setting log file,
handling license file, plug-in path, library version and so on.

Inherits
The ISIMCAQ interface does not extend any other interface and is not extended by any another interface.

Dispatches
The ISIMCAQ dispatches the following interfaces.

The data structures:

• IStringVector

• IFloatVector

• IIntVector

• IStringMatrix

• IFloatMatrix

• IBoolVector

• IComponentVector

The data structures are straight forward and will not be described in this document. They all have their starting index
at 1, not 0 as some programming languages. For example; an IFloatVector of size 4 has the positions 1, 2, 3 and 4 as
valid positions. An IFloatMatrix with 3 rows and 2 columns has the positions 1, 2 and 3 as valid positions for the row, 1
and 2 as valid positions for the column.

www.sartorius.com/umetrics

Other main interfaces

• IProject

• IFileReader

IImport
The IImport interface represents a spreadsheet-like import object that will result in dataset, and maybe a new
project, when the import is done. From this interface such things as adding quantitative and qualitative data, setting
names for observations, variables and pointing out which ones are Y can be done.

Inherits
The IImport interface does not extend any interface. No interfaces derive from it.

Dispatches
The IImport interface dispatches the following interfaces.

• IProject

• IDataset

IWorkset
The IWorkset interface represents a workset, which is a specification for a model about how to use the data in the
dataset. Among the interface functions are inclusion/exclusion of variables/observations, transformation/scaling,
handling of classes and creating/updating a model.

Inherits
The IWorkset interface does not extend any interface. No interfaces derive from it.

Dispatches
The IWorkset interface dispatches the following interface.

• IModel

IFilter
The IFilter interface is used to create a spectral or time series filtered dataset. This includes specifying the filter type
and all available filter settings.

Inherits
The IFilter interface does not extend any interface. No interface derives from it.

Dispatches
The IFilter interface dispatches no other interface.

IProject
The IProject interface represents a SIMCA-Q project. From this interface, such things as setting project options,
reading project, data and model information are retrieved.

Inherits
The IProject interface does not extend any other interface. No interface derives from it.

Dispatches
The IProject interface dispatches the following interfaces.

• IModel

• IProjectOptions

• IDataset

• IShewhartControlChart

• IEWMAControlChart

www.sartorius.com/umetrics

• ICusumControlChart

IModel
The IModel interface represents a model in a SIMCA-Q project. From the IModel interface all model specific data
are retrieved. Functions like getting the scores, DModX, the name of the model, number of components and
starting a prediction are contained in this interface.

Inherits
The IModel interface does not extend any other interface, and in the batch prediction version it is extended by
IBatchLevelModel and IBatchEvolutionModel.

Dispatches
The IModel interface dispatches the following interfaces.

• IVectorData

• IPreparePrediction

• IModelStatistics

• IModelOptions

• IIntVector

• IStringVector

IDataset
The IDataset interface represents a dataset, a spreadsheet-like object in a project. The functions in IDataset enable
retrieval of dataset information, like variable- and observation IDs and observation data.

Inherits
The IDataset interface does not extend any other interface. No interface derives from it.

Dispatches
The IDataset interface dispatches the following interfaces.

• IVariableVector

• IDatasetTypeVector

• IStringVector

• IVectorData

IVectorData
The IVectorData interface represents the output from a vector. It consists of a float matrix with corresponding row
and column names.

Inherits
The IVectorData interface does not extend any other interface. No interface derives from it.

Dispatches
The IVectorData interface dispatches the following interfaces.

• IFloatMatrix

• IStringVector

IVariableVector
The IVariableVector interface represents a vector with variables.

Inherits
The IVariableVector interface does not extend any other interface. No interface derives from it.

Dispatches
The IVariableVector interface dispatches the following interface.

www.sartorius.com/umetrics

• IVariable

IVariable
The IVariable interface represents a variable in the model or in the dataset. If has functions to get the ID of the
variable, information whether the variable is X, Y, qualitative, lagged etc.

Inherits
The IVariable interface does not extend any other interface. No interface derives from it.

Dispatches
The IVariable interface dispatches the following interface.

• IIntVector

• IStringVector

IBatchModel
The IBatchModel interface represents a BatchModel(BM) which holds the Batch Evolution Model(BEM) and the
Batch Level Model(BLM)-models built on datasets created from that BEM.

Inherits
The IBatchModel interface does not extend any interface. No interface derives from it.

Dispatches
The IBatchModel interface dispatches following interfaces:

• IBatchEvolutionModel

• IBatchLevelModel

IBatchPrediction
The IBatchPrediction interface represents a batch prediction made from a batch project. This interface is only a
dispatcher for the IBatchEvolutionPrediction and IPrediction interfaces.

Inherits
The IBatchPrediction interface does not extend any interface. No interface derives from it.

Dispatches
The IBatchPrediction interface dispatches following interfaces:

• IBatchEvolutionPrediction

• IPrediction

IBatchEvolutionModel
The IBatchEvolutionModel interface represents a batch evolution model. Besides the base interface functions there
exist functions for retrieving model aligned data and batch information.

Inherits
The IBatchEvolutionModel interface extends the IModel interface. No interfaces derive from it.

Dispatches
The IBatchEvolutionModel interface dispatches no other interface.

IBatchLevelModel
The IBatchLevelModel interface represents a batch level model. Besides the base interface functions there exist
functions for Batch VIP and retrieval of the IPrepareBatchPredictions interface.

Inherits
The IBatchLevelModel interface extends the IModel interface. No interfaces derive from it.

www.sartorius.com/umetrics

Dispatches
The IBatchLevelModel interface dispatches following interface:

• IPrepareBatchPrediction

IPreparePrediction
The IPreparePrediction interface represents a collection of data that is used for a prediction. It has functions for
getting the variables required for the prediction, setting quantitative and qualitative data/lags that should be used
for prediction.

Inherits
The IPreparePrediction interface does not extend any other interface. No interface derives from it.

Dispatches
The IPreparePrediction interface dispatches the following interfaces.

• IVariableVector

• IPrediction

IPrediction
The IPrediction interface represents a prediction made on some data and a model. The functions in this interface
retrieve predicted data from the prediction.

Inherits
The IPrediction interface does not extend any other interface, and in the batch prediction version it is extended by
IBatchEvolutionPrediction.

Dispatches
The IPreparePrediction interface dispatches the following interface.

• IVectorData

IPrepareBatchPrediction
The IPrepareBatchPrediction interface contains functions to specify data for a batch prediction. These include
specifying data for each phase, local centering and batch conditions.

Inherits
The IPrepareBatchPrediction interface does not extend any interface. No interface derives from it.

Dispatches
The IPrepareBatchPrediction interface dispatches following interfaces:

• IBatchPrediction

IVariableOrigin
The IVariableOrigin interface represents the origin of a batch level variable.

Inherits
The IVariableOrigin interface does not extend any interface. No interface derives from it.

Dispatches
The IVariableOrigin interface dispatches no other interface.

IShewhartControlChart
The IShewhartControlChart interface represents a Shewhart Control Chart.

Functions like getting the Mean Upper/Lower Control limits and the standard deviation process are contained in
this interface.

www.sartorius.com/umetrics

Inherits
The IShewhartControlChart interface does not extend any interface. No interface derives from it.

Dispatches
The IShewhartControlChart interface dispatches no other interface.

IEWMAControlChart
The IEWMAControlChart interface represents a EWMA Control Chart. The functions in IEWMAControlChart
enable retrieval of the EWMA Upper/Lower Control limits and the EWMA standard deviation.

Inherits
The IEWMAControlChart interface does not extend any interface. No interface derives from it.

Dispatches
The IEWMAControlChart interface dispatches no other interface.

ICusumControlChart
The ICusumControlChart interface represents a Cusum Control Chart. It has functions for retrieving the cumulative
sum on the high side and the low side difference, the action limit and deadband among others.

Inherits
The ICusumControlChart interface does not extend any interface. No interface derives from it.

Dispatches
The ICusumControlChart interface dispatches no other interface.

IProjectOptions
The IProjectOptions interface contains all options about a project, confidence level, significance level etc.

Inherits
The IProjectOptions interface does not extend any interface. No interfaces derive from it.

Dispatches
The IProjectOptions interface dispatches no other interface.

IModelStatistics
The IModelStatistics interface represents different statistics for a workset or a model.

Inherits
The IModelStatistics interface does not extend any interface. No interfaces derive from it.

Dispatches
The IModelStatistics interface dispatches no other interface.

IModelOptions
The IModelOptions interface contains all options about a model.

Inherits
The IModelOptions interface does not extend any interface. No interfaces derive from it.

Dispatches
The IModelOptions interface dispatches no other interface.

IFileReader
The IFileReader interface represents the import of a prediction set from a file. The IFileReader interface is only
available if allowed by the license.

www.sartorius.com/umetrics

Inherits
The IFileReader interface does not extend any interface. No interfaces derive from it.

Dispatches
The IFileReader interface dispatches the following interfaces.

• IFileReaderSpecification

• IPrediction

IFileReaderOptions
The IFileReaderOptions interface represents the settings available for different file types.

Inherits
The IFileReaderOptions interface does not extend any interface. No interfaces derive from it.

Dispatches
The IFileReaderOptions interface dispatches no other interfaces.

IFileReaderSpecification
The IFileReaderSpecification interface represents the structure of the file to import, were the data starts in the file,
etc.

Inherits
The IFileReaderSpecification interface does not extend any interface. No interfaces derive from it.

Dispatches
The IFileReaderSpecification interface dispatches no other interfaces.

