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Raman spectroscopy is used 
widely in biomanufacturing as 
a process analytical 
technology (PAT) for 

monitoring analytes such as glucose 
and lactate (1). Predictive Raman 
models also can be used to control 
glucose concentration in cell cultures 
(2). The technique is becoming more 
popular for pilot- and manufacturing-
scale bioreactors, but it only recently 
has been studied with minibioreactors 
for measuring analytes and producing 
predictive Raman models for feedback 
control (3) thanks to advances in 
integrated technology for automating 
sampling, analysis, and data 
management.

Raman-based process control relies 
on developing calibration models that 
correlate a spectral signal with an 
analyte or other measurements, 
generally from benchtop- to production-
scale bioreactors. To build such a model 
requires measuring multiple analytes, 
ideally in a design of experiments (DoE) 
approach to cover as many expected 
process variations as possible by 
design rather than by chance. Thus, 
producing a predictive model can be 
time-consuming and costly. For 
example, in one study 37 bioprocess 
runs (from 2  L to 5,000 L) generated 
hundreds of data points (4). Because 
such a study at commercial scale is 
expensive in terms of media, reagents, 
and staff time, predictive Raman models 
are built by monitoring multiple 
production runs for variations or waiting 
for out-of-specification (OoS) batches to 
occur. Planned process variations 
usually cannot run in larger-scale 
bioreactors because of cost and waste: 
A manufactured batch of product must 

be discarded if the standard operating 
procedure (SOP) is not followed.

Using real-time Raman spectroscopy 
in minibioreactors such as an Ambr 250 
bioreactor to mimic manufacturing-scale 
cell culture (5) makes sense because it 
enables cost-effective experimental 
design with induced variations and 
efficient model building. Because one 
run can generate data from 24–48 
different bioreactor conditions or 
process trajectories, the design space 
can be much larger than one provided 
by running hundreds of production 
batches with random variations. That 
allows for acquisition of statistically 
relevant data that help users build 
lower-cost predictive Raman models 
rapidly.

Here we discuss the physical and 
data integration of Raman spectroscopy 
with Ambr bioreactors using a BioPAT 
Spectro spectroscopy platform. This 
integration enables real-time Raman 

spectroscopy measurement of 
bioreactor samples. The data generated 
can be analyzed by SIMCA 16 
multivariate data analysis (MVDA) 
software to build a predictive model for 
glucose in a typical cell culture (SIMCA 
= soft independent modeling by class 
analogy). We then demonstrate that this 
predictive Raman model can be used 
for real-time estimation of glucose 
concentration in new bioreactor 
samples, enabling feedback control of 
glucose concentration in 
minibioreactors. 

Raman Spectroscopy 
Integration 
Adapting Ambr 15 cell-culture and 
Ambr 250 high-throughput systems for 
integrated Raman spectroscopy 
required connecting a user-replaceable 
Raman flow cell to a sample cup. A 
waste bottle needed to be incorporated 
into the Ambr analysis module, which 
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Figure 1: Schematic diagram of the Ambr analysis module showing the BioPAT Spectro 
platform fitted to an Ambr 250 high-throughput system 
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can be fitted to either Ambr system. 
The flow cell is connected to a BioPAT 
Spectro optical probe compatible with 
Raman spectrometers (Kaiser Optical 
Systems and Tornado Spectral 
Systems). Samples are taken 
automatically from each minibioreactor 
(160 μL from the Ambr 15 bioreactor and 
200 μL from the Ambr 250 bioreactor) 
by a liquid handler and released into 
the sample cup of the Ambr analysis 
module. The sample is transferred using 
a syringe pump to the flow cell for 
Raman measurement by a fiber optical 
probe, which connects the BioPAT 
Spectro flow cell to a spectrometer. 
After Raman measurement, the sample 
is discarded to waste, and a cleaning 
cycle is performed (using standard 
Ambr AM washing liquids) to prevent 
sample carryover. 

For spiking samples, a cell culture 
sample is released into a well plate, 
and a single analyte stock solution is 
added by the liquid handler. Both are 
mixed in the well plate by pipette 
aspiration and dispensing, followed by 
sample transfer to a sample cup and 
delivery to the flow cell for 
measurement. The cycle time is ~10–15 
minutes per sample. Ambr software 
automatically collates all key data from 
the Ambr bioreactors, Raman probe, 
and other analyzers integrated with the 
Ambr system. The data are merged for 
model construction and exported as a 
CSV file for statistical analysis and 
model building using SIMCA software.

Proof-of-Concept Process Run 
To produce statistically relevant data for 
robust Raman model building, data 
were taken from 16 Ambr 250 system 
minibioreactors that were run using a 
Cellca Chinese hamster ovary (CHO) 
cell line, media, and process expressing 
a monoclonal antibody (MAb). Culture 
samples (0.5 mL) were analyzed daily 
from the model(s) using an integrated 
BioProfile Flex2 automated cell culture 
analyzer (Nova Biomedical Corporation) 
as a reference standard to monitor 
analytes including glucose and viable 
cell concentration (VCC). 

Raman spectra were acquired to 
correspond as closely as possible to the 
at-line reference measurements from 
bioreactor samples (200 µL) both 
before and after they were spiked with 

one low concentration (7.1 g/L) and one 
high concentration (33.3 g/L) of stock 
glucose solutions (spiking volume 
20–60 µL). Spiked solutions were 
mixed in a microwell plate before 
analysis. From the bioreactors, 35 
spiked samples were collected and 
measured with a RamanRXn2 hybrid 
in situ analyzer (Kaiser Optical Systems) 
as well as the reference BioProfile Flex2 
analyzer. The sampling regimen 
consisted of one reference 
measurement per vessel followed by 
acquisition of Raman spectra from an 
unspiked sample and a spiked sample. 
Data were collated automatically in the 
Ambr software and exported as a CSV 
file into SIMCA 16 MVDA software for 
model building. Figure 2 summarizes 
Raman model building and process 
control. 

Raman Model Building
An orthogonal partial least squares 
(OPLS) regression model was 
generated with SIMCA MVDA software 
using unspiked and spiked Raman 
spectra and corresponding glucose 
measurements. The results show good 
correlation between the observed 
(reference BioProfile Flex2 data) and 
Raman predictions for glucose in an 
unspiked cell culture. That 
demonstrates that the unspiked glucose 
Raman model (Figure 3, left) is a good 
fit with an R2 value close to 1, and low 
prediction errors RMSEE/RMSECV (root 
mean square error of estimation and 
root mean square error of cross 
validation) of 0.26 and 0.28 g/L, 
respectively. Those figures correspond 
well to the literature (6) showing 
comparable values using Raman 
spectroscopy for glucose in unspiked 
samples cultured in minibioreactors, 
indicating that this Raman model could 
be used to predict glucose 

concentrations with a similar accuracy 
to observed concentrations. 

Results from the spiked Raman 
model (Figure 3, right) provide a proof 
of methodology for specific spiking in 
the Ambr bioreactor. Spiking 
successfully extended the calibration 
range of the glucose model, an 
important aspect of robust model 
generation involving other analytes 
such as lactate, for which typical 
process ranges are much smaller. 

Raman-Based Process Control 
Before the feedback control 
demonstration run, a Raman glucose 
model that had been built in SIMCA 16 
was loaded into the Ambr software. That 
was used for real-time glucose 
monitoring throughout a 12-day process 
alongside reference glucose 
measurements using an integrated 
BioProfile Flex2. To determine the 
potential of using Raman-predicted 
glucose values for process control, 
glucose was maintained at 5 g/L from 
day 6 onward using either Raman 
predictions (n = 4) or BioProfile Flex2 
measurements (n = 4). The results show 
that Raman glucose predictions align 
very closely with reference analyzer 
values (Figure 4, left) and when used to 
control glucose, lead to comparable VCC 
profiles (Figure 4, right). This indicates 
that the BioPAT Spectro analyzer in an 
Ambr system enables fully automated 
glucose control capabilities similar to 
those of other analytical techniques and 
demonstrates the ability to control a cell 
culture process using only a glucose 
Raman model. 

Those results are promising. BioPAT 
Spectro analyzers in minibioreactors 
use Raman probes and flow-cell optical 
paths similar to those used for on-line 
Raman spectroscopy monitoring in 
Biostat STR single-use pilot and 

Figure 2: How to build Raman models in Ambr minibioreactors and how to use models 
for process control 
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commercial-scale bioreactors (50–
2,000 L). So the next step is to transfer 
Raman models built based on small-
scale data to those larger bioreactors 
to demonstrate the scalability of Ambr-
derived Raman models.

A Robust Glucose Model 
We have described integration of Raman 
spectroscopy with Ambr minibioreactor 
systems using BioPAT Spectro probe 
technology. We have demonstrated in a 
proof-of-concept study using a MAb-
expressing cell line cultured in Ambr 250 
bioreactors that glucose measurements 
from Raman spectra generated by 
BioPAT Spectro show good correlation 
with observed reference data from a 
BioProfile Flex2 integrated analyzer. 
Based on the capabilities of automated 
spectral acquisition and spiking, as well 
as the automatic alignment of reference 
data, we have shown that an Ambr 250 
high-throughput system can generate a 
robust Raman glucose model. The 
multiparallel nature of the Ambr system 
facilitates DoE, potentially enabling 
robust models for glucose and other 
analytes of interest. 

We also have demonstrated from a 
process run in Ambr 250 minibioreactors 
that MAb-expressing cell cultures 
controlled by a predictive Raman model 
for glucose have similar glucose and 
VCC profiles compared with reference 
data. Ambr Raman prediction models 
have robust built-in process variations 
that can be transferred and exploited in 
large-scale production bioreactors with 
significantly reduced calibration effort.
That gives them utility in reducing the 
timelines and costs in manufacturing 
biologics. 

References 
1	 Buckley K, Ryder AG. Applications of 

Raman Spectroscopy in Biopharmaceutical 
Manufacturing: A Short Review. Appl. 
Spectrosc. 71(6) 2017: 1085-1116; https://doi.
org/0.1177/0003702817703270.

2	 Berry B, et al. Cross-Scale Predictive 
Modeling of CHO Cell Culture Growth and 
Metabolites Using Raman Spectroscopy and 
Multivariate Analysis. Biotechnol. Prog. 31(2) 
2015: 566–577; https://doi.org/10.1002/
btpr.2035.

3	 Rowland-Jones RC, Jaques C. At-Line 
Raman Spectroscopy and Design of 

Experiments for Robust Monitoring and 
Control of Miniature Bioreactor Cultures. 
Biotechnol Prog. 35(2) 2019: e2740; https://
doi.org/10.1002/btpr.2740.

4	 Li B, et al. Performance Monitoring of 
a Mammalian Cell-Based Bioprocess Using 
Raman Spectroscopy. Anal. Chim. Acta. 796, 
2013: 84–91; https://doi.org/10.1016/j.
aca.2013.07.058, 

5	 Manahan M, et al. Scale-Down Model 
Qualification of Ambr® 250 High-Throughput 
Mini-Bioreactor System for Two Commercial-
Scale MAb Processes. Biotechnol. Prog. 
2019: e2870; https://doi.org/10.1002/
btpr.2870. 

6	 Rowland-Jones R.C, et al. Comparison 
of Spectroscopy Technologies for Improved 
Mmonitoring of Cell Culture Processes in 
Miniature Bioreactors. Biotechnol. Prog. 
33(2) 2017: 337–346; https://doi.org/10.1002/
btpr.2459. cc

Corresponding author Michael Sibley is a 
development scientist at Sartorius; 
44-1763-227200; michael.sibley@
sartorius.com; www.sartorius.com/ 
biopat-spectro.

Figure 3: Comparing reference and Raman model plots of glucose in unspiked (left, n ~250) and spiked (right, n ~280) cell culture 
samples from Ambr 250 minibioreactors (RMSEE = root mean square error of estimation; RMSECV = root mean square error of cross 
validation)
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Figure 4: Comparing reference (BioProfile Flex2 analyzer) and Raman model plots of glucose concentration (left, n = 1) and VCC (right, 
n = 4) in Ambr 250 minibioreactors. 
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