Simplifying high throughput 3D spheroid growth and shrinkage assays using live content imaging

T. Dale¹, K. Patel¹, B. O'Clair², T. O'Callaghan¹, D. Appledorn², D. Trezise¹

¹Essen BioScience Ltd, Welwyn Garden City, AL7 3AX UK & ²Essen BioScience Inc, Ann Arbor, Michigan, 48108 USA

Summary & Impact

- Creating spheroids using Corning[®] Ultra Low Attachment plates provides a technically simple, robust and economical approach to creating 3D spheroids in 96-well plates (equivalent to 2D).
- Using fluorescently labelled cells and IncuCyte ZOOM[™], we have assembled and validated fullykinetic, spheroid growth and shrinkage assays.
- IncuCyte ZOOM[™] metrics (spheroid size, (area/confluence) and fluorescence intensity (Mean Image Fluorescence, MIF)) are informative, and can be readily gathered to monitor spheroid growth and shrinkage over time.
- Spheroid fluorescence intensity can be measured without masking, and may be a useful indicator of spheroid 3D nature and/or cell health.
- The images and time-lapse movies provide important information and validation regarding spheroid morphology and the effects of test samples.
- These assays should prove useful for medium throughput, quantitative pharmacology of test samples for effects on the growth and shrinkage of tumor cells in 3D.

Cell proliferation/ spheroid growth can be directly compared in 2D and 3D.

96-well spheroid assay workflow – an integrated solution

- Cells seeded into each well on a ULA plate and placed within the IncuCyte ZOOM[™] to monitor spheroid formation (72 – 96h)
- Plate removed, samples added, plate returned to the IncuCyte to monitor and quantify spheroid parameters (size, fluorescence)
- Option to re-feed spheroids every 96h: remove media from each well, replace with an equal volume of test samples in
 - Format compatible with 96- & 384-well ULA plates, manual or automated liquid handling Method compatible with a large selection of cell types (> 30 cell

types tested)

Successful spheroid formation using multiple cell types - Matrigel™ **Protocol compatible with different cell types** U-87 MG (1K) MDA-MB-231 (5K) A549 (5K) MCF-7 (5K) HT1080 (5K) ~ 550 µm ~ 400 µm ~ 450 – 550 um ~ 470 µm A172 (5K) RCC4+ (5K) MDA-MB-231 (5K) SKOV-3 (7.5K) A375-C6 (1K)

Time (0 – 10 days)

Plate views represent a facile visualisation the kinetic temporal data for spheroid growth and shrinkage (fluorescence confluence %) collected from a single 96-well microtitre plate

~ 450 µm

~ 460 µm

- High quality HD phase images of spheroids formed from a range of tumor cell lines (72h post seeding)
- A single spheroid is centrally located in each well of ULA plate
- Different 3D morphologies are observed (tight spheroids, compact and loose aggregates)
- Note, the 3D structure of loose aggregates can be improved by the inclusion of a basement membrane extract (e.g. 2.5% Matrigel™) at the stage of spheroid initiation

Quantifying spheroid growth and shrinkage over time

HD phase and fluorescent images of A549 human lung epithelial carcinoma cells stably expressing nuclear restricted RFP (A549 NucLight Red[™], Essen BioScience)

+ Matrigel[™] (2.5%)

- Spheroids were treated with vehicle (0.1% DMSO) or the cytotoxic agent, staurosporin (SSP, 1μ M) at T=Oh
- Note the increase in size and fluorescence intensity of the vehicle treated spheroid and the shrinkage and dimming of the SPP treated spheroid
- Note the IncuCyte software's ability to accurately mask fluorescent images
- Spheroid growth and shrinkage can be quantified kinetically using the IncuCyte size metrics (fluorescence

- A panel of compounds with different mechanisms of action were profiled in a 3D spheroid culture of human A549 cells stably expressing a red fluorescent label (A549 NucLight Red™)
- Time-course plots with the corresponding concentration response curves derived from the calculated area under the curve (AUC)
- The dotted line on the CRC plots represents the FLU confluence at time = 0 h, thus compounds yielding inhibition below this level (e.g. KU0063794) are likely to be inducing spheroid shrinkage and cell death

4 5

20-20-10-

FLU

300

200

100

Time (h)

8 m m

Coatings applied and cells seeded into each well on a standard flat bottom 96-well microtitre plate and placed within the IncuCyte ZOOM[™] to monitor colony formation (up to 14 days)

0

area and fluorescence confluence) which require masking of the fluorescent spheroid

phase contrast

onfluence (

Ú 10-

Phase

* *

Validation of size metric

200

Time (h)

100

300

 \bigcirc

30 5 .

- BioScience) Note the increase in colony size and the ability to accurately
- mask phase images using the integrated IncuCyte software
- Colony growth can be quantified kinetically using the IncuCyte confluence metrics (phase or fluorescence confluence)
- Current challenges:

- Meniscus of agar can lead to distorted focusing at well edge - Merged colonies require segmentation for accurate counting

www.essenbioscience.com