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The Evolution of Immune Cell Killing Assays Using Live-Cell Analysis
How enhanced data analytics and translational models can provide
new biological insights

Introduction

In the ongoing battle to understand cancer and develop new therapeutic strategies,
researchers are exploring the role of the patient's own immune system in defending the
body against tumors. A critical component of this anti-cancer response is the ability of
certain immune cells, such as cytotoxic T and natural killer cells, to induce malignant cell
death through the process of immune cell killing (ICK). Modeling ICK in vitro is therefore
of paramount importance.

There are multiple techniques traditionally used to assess ICK, such as flow cytometry and
biochemical readouts. While these are valuable tools, they derive measurements from single time
point analyses and do not characterize dynamic cellular interactions, limiting the biological insights
that can be gained. Therefore, to develop a more comprehensive understanding of ICK, researchers
are seeking new assays which can provide complementary information to supplement current
workflows.

Scientists have a particular need for methods that can capture, visualize and quantify the dynamic
changes associated with ICK. Additionally, as increasingly translational models become more widely
used, researchers require flexible ICK assays that can be applied to 3D tumor spheroids as well as
adherent and non-adherent 2D co-cultures. This whitepaper demonstrates how the technique of
real-time live-cell analysis has evolved to meet these changing requirements of immuno-oncology
research.
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Assessing immune cell killing in
cancer research: The key challenges

Given the complexity of ICK, researchers often face numerous
challenges when modeling this process in vitro. One key
difficulty is the inability to determine cell-specific cytotoxic
signals in co-culture models due to global well measurements.
For example, with techniques that measure enzyme release
(such as the LDH and GAPDH release assays), it is not possible
to determine whether signals derive from the death of tumor
or immune cells within the co-culture model. To address this
challenge, the *'Cr release assay can be employed to isolate cell-
specific signals. However, background signals can still limit the
conclusions drawn from this assay as many cancer cells do not
effectively take up or retain the chromium label2

Even with the most reliable analysis of tumor cell cytotoxicity,
such aggregate measures of cell death cannot reflect the
subtleties of the complex cellular interactions involved in

ICK. Different T-cell subsets, for instance, can have distinct
functional roles when inducing tumor cell death®. Researchers
exploring these differences in behavior will need to study the
morphological characteristics of the activated immune cells and
their spatial relationship with cancer cells. However, methods
traditionally used to assess ICK are non-image based and
often require cell lifting. Therefore, scientists looking to gather
phenotypic and spatial insight into this dynamic process will
need to employ complementary techniques.

Alongside the difficulties in obtaining reliable and
comprehensive data, traditional assays also lack the temporal
resolution required to fully characterize the process of ICK. Since
most methods assess parameters at a single pre-determined
endpoint, it is not possible to gain insights into dynamic
changes in biology*. An additional concern is the variability in
cell maturity and health at the point of data collection, which
can limit the quality and reliability of results. Moreover, when
a problem is identified, troubleshooting to determine the cause
can involve repeated experimental runs that consume valuable
material and can take significant time.

The growing need for flexibility and multiplexing

As cell culture models become more complex, the challenges
associated with measuring ICK become significantly harder

to overcome. This is a pressing issue in immuno-oncology
research, as scientists are often moving away from simple

2D culture systems to embrace advanced 3D models with
greater physiological relevance. For example, tumor spheroid
models are increasingly employed to reveal how the tumor
microenvironment (TME) affects the interaction between cancer
and the immune response®®. As a further strategy to gain more
translational insights, many researchers are now incorporating
patient-derived material such as biopsy tissue or chimeric
antigen receptor (CAR) T cells into ICK models, which could

help unlock the full potential of personalized medicines. In this
expanding landscape of translational cellular research, scientists
are increasingly seeking flexible ICK assays which can be adapted
to a range of different culture models.

The complex cultures involved in these translational models
tend to be more delicate. As such, they are more susceptible to
perturbations in environmental conditions, making it technically
challenging to obtain reliable results. However, since these fragile
cultures are much more precious than cell lines, it is vital to
gain the most value from each assay. Consequently, researchers
are recognizing the need for new ICK methods that enable
better monitoring of cells and have the multiplexing capacity to
extract the most information from the smallest possible amount
of material. For scientists looking to meet these requirements,

a particularly promising approach is live-cell analysis.



Live-cell analysis: A flexible solution
to meet new requirements

Live-cell analysis utilizes time-lapse imaging to capture the
behavior of living cells in real-time. Cultures are maintained
upon an imaging platform contained within the incubator,
providing a dynamic view of biological events and behavioral
changes throughout the experiment. Scientists can therefore
continually assess the culture and schedule manipulations and
measurements when most appropriate. Such flexibility is a key
benefit for researchers contending with biological variability
between cultures, particularly when there is the need to
maximize the amount of data gained from precious material.

The technique of live-cell analysis can be applied to measure
ICK across a variety of in vitro models, including both 2D and
3D cultures. In the simplest 2D application, tumor cells are
maintained in a basic co-culture with selected immune cells
such as T cells or human peripheral blood mononuclear cells
(PBMCs) that are activated with soluble cytokines, antibodies
or beads. Most typically, tumor cells will be labeled with a
nuclear-restricted fluorescent protein which can be quantified
as a marker of proliferation, while apoptosis will be measured in
a second fluorescence channel using reagents such as Caspase
3/7 or Annexin V. To mitigate the contribution of immune cell
apoptosis, size-gating filter settings are employed to exclude the
smaller effector cells, thus reducing contaminating signals.

Crucially, since the mix-and-read reagents are added at the
beginning of the experiment and the imaging platform is
contained within the incubator, cells are undisturbed throughout
the duration of the assay. This is a major advantage for delicate
cultures which require a stable environment.

To illustrate the value of live-cell analysis for measuring ICK,
A549 Nuclight Red tumor cells (2,000 cells/well) were cultured
in combination with PBMCs (20,000 cells/well, target: effector
(T:E) ratio of 1:10). All wells contained Caspase 3/7 Green reagent
to measure apoptosis. To activate the T cells in select wells, anti-
CD3 in combination with IL-2 was added. Images were captured
every two hours over a period of four days. These images were
then analyzed to assess target cell proliferation using the count
of red objects (nuclei), and to quantify target cell death using
the count of green objects over time (Figure 1). Results revealed
that wells containing activated T cells showed signs of target cell
death and reduced proliferation.
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Figure 1: The use of live-cell analysis to assess immune cell killing in a simple 2D co-culture model. A. Visualization of the interplay between immune cells and
tumor cells. B. Quantification of tumor cell proliferation and death in real-time. Images were analyzed for red object count to assess tumor cell proliferation
and green object count to assess tumor cell death. Wells in which T cells were activated showed increased target cell death and reduced proliferation.

The images obtained from these wells clearly show the The study presented above demonstrates the basic use of
interactions between immune cells and T cells, illustrating the live-cell analysis—to obtain aggregate measures of tumor cell
process of T-cell attack followed by cytoplasmic granulation proliferation and apoptosis, and to provide valuable qualitative
and Caspase 3/7 labeling. In addition to static images, it data showing the interplay between cell types.

is possible to create videos to fully capture the process of
ICK. This wealth of visual data allows researchers to gather
rich biological information and can also prove invaluable for
troubleshooting and quality control (QC).



Gaining additional insights with
enhanced data analytics

As the analytical capacity of live-cell analysis has evolved,
scientists have gained new abilities to shed light on ICK. A key
step forward has been the development of advanced image
processing algorithms to define individual cells. Therefore,
rather than simply using red object count to quantify tumor
cells, scientists can now employ cell masking software (such as
IncuCyte® Cell-by-Cell Analysis) to recognize all cells within the
image. Since tumor cells will be labeled with RFP, the cells can
then be classified into effector and target populations based on
the presence or absence of red fluorescence.

This ability to distinguish different cell types raises several
advantages. Firstly, researchers can enumerate effector cells
without the use of labels. Secondly, scientists can improve cell
classification in studies involving non-adherent target cells.
These tumor cells can look very similar to immune cells, making
it challenging to isolate target apoptosis from contaminating
effector cell signals using the size gating method employed in
standard analysis.

To illustrate the use of cell masking software in non-adherent
cultures, Ramos NucLight Red cells (10,000 cells/well) were
mixed with an increasing ratio of pre-activated or non-activated
PBMCs in the presence of Annexin V Green as a marker of
apoptosis (Figure 2). Advanced image processing algorithms
within the IncuCyte Cell-by-Cell Analysis Software were used to
mask individual cells, which could then be classified into target
and effector cell populations based on the presence or absence
of red fluorescence. The target cell population (red) displayed

a decrease in proliferation and an increase in apoptosis in the
presence of increasing numbers of effector cells. In contrast, the
effector cell population (non-red) displayed proliferation over
time, but only for activated cells.

Advances in image analysis software also enable scientists to
visualize and quantify interactions between immune and tumor
cells. For instance, quantifying the coincidence or overlay of
two cell masks enables the assessment of immune and target
cell interaction. To demonstrate this, A549 CytolLight Red tumor
cells (5,000 cells/well) were cultured with either pre-activated
or non-activated PBMCs (25,000 cells/well, T:E ratio of 1:5) in
the presence of IncuCyte® FabFluor-488-a-CD45 and IncuCyte®
Opti-Green to label the total lymphocyte population (Figure 3).
Two hours after PBMC addition, image processing software

was used to mask the cells, enabling the spatial information

of the target and effector cells to be quantified. Consistent
with expectations, activated PBMCs showed a much greater
interaction with target cells, aligning with increased ICK.
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Figure 2: Enhanced image quantification using IncuCyte Cell-by-Cell Analysis Software. A.Images show individual cell masking of the total population
with the Cell-by-Cell software. Target (blue) and effector (yellow) sub-populations were distinguished based on red fluorescence. B. Sub-populations were
classified based on red and green fluorescence. C. Quantification of proliferation and apoptosis over time. The target cell population (positive red cells)
show a decrease in proliferation and increase in apoptosis (% of red cells also green) in the presence of increasing numbers of effector cells. The effector cell
population (non-red cells) show proliferation when activated. Data shown as mean +/- SEM, n=4 wells.
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Cellular interactions can be quantified
and analyzed by using image processing
algorithms to define cell coincidence.

Figure 3: Visualization and quantification of immune and tumor cell
interactions. A.Images at two hours after PBMC addition show interactions
between CD45+ cells (green) and A549 cells (red). The overlay between

the two cell types is shown with the yellow mask. B. Quantification of the
overlay reveals a markedly higher interaction for activated compared to
non-activated effector cells.

By measuring and quantifying cellular interactions, scientists
can gain additional morphological and spatial insights to better
characterize the process of ICK. Ultimately, this information
could support the identification of novel therapeutic candidates.
Assessing the duration of cellular interactions, for example,
could prove very valuable for drug discovery programs, since

a longer contact time between immune and cancer cells is
potentially associated with increased ICK.
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A further application of enhanced image processing is to use
antibodies specific to surface markers to independently assess
distinct effector cell subtypes. This type of subset analysis

in conjunction with interaction assessment allows scientists

to determine which immune cell populations are interacting

with target cells. As a result, this approach could distinguish a
greater therapeutic effect on a small subset of cells from a lesser
therapeutic effect on all cells. Since heterogeneity between
different effector cell types is a major complicating factor in
immuno-oncology drug discovery, these new capabilities provide
a significant advantage over assays that employ aggregate
measures based on consolidating the information from all cells.



Applying live-cell analysis to
3D tumor spheroid models

A growing body of evidence highlights the importance of

the tissue environment and architecture in modulating the
complex relationship between immune and tumor cells.
Consequently, many scientists are now employing 3D models to
gain more physiologically relevant data when assessing cancer
immunotherapy agents in vitro. Indeed, evidence shows that
tumor cells cultured in 3D can exhibit heightened resistance to
cytotoxicity, which is more reflective of the in vivo situation®.

Tumor spheroid models, which incorporate 3D cellular aggregates
formed of cancer cells, provide a useful way of reflecting the
3D TME as they model important features such as cell-to-cell
contact and oxygen gradients”® One type of spheroid model
commonly used in ICK research uses single spheroids, aggregates
which can be formed by seeding tumor cells in ultra-low

A. A549 + PBMCs

attachment plates. These provide a useful tool for studying ICK
in solid tumors which may have hypoxic cores.

To demonstrate the use of single spheroid models to assess ICK,
A549 NucLight Red tumor cells were seeded in a round-bottom
96-well plate (2,500 cells/well) and allowed to form spheroids
over three days. Once formed, spheroids were co-cultured with
PBMCs at a T:E ratio of 1:2.5 in the presence or absence of
activating cytokines (anti-CD3 and IL-2). IncuCyte high definition
phase and fluorescence images were then used to monitor

the spheroids over several days. Results show a marked loss of
fluorescence intensity for spheroids in the presence of activated
PBMCs, reflecting an increased death of tumor cells.
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Figure 4: Impact of activated PBMCs on tumor spheroid proliferation. A. High definition phase and fluorescence images compare the effect of PBMCs on
spheroid proliferation in the absence (top panel) and presence (bottom panel) of activating cytokines. A marked loss of fluorescence intensity can be seen in
the presence of activated PBMCs. B. Time-course plot shows spheroid cytotoxicity quantified as a loss of fluorescence intensity over time. Data was collected

over seven days at six-hour intervals. Data shown as mean +/- SEM, n=3 wells.



Multi-spheroid models

Multi-spheroid models, which incorporate components of the
extracellular matrix (ECM), provide an alternative option for
immuno-oncology researchers. The ECM plays an important role
in ICK, as it can influence cellular interactions and affect the
infiltration of immune cells into 3D structures. In multi-spheroid
models, the biomatrix alters the formation process so that
multiple heterogeneous spheroids are created in each well.

Live-cell analysis can easily be employed to measure ICK within
these multi-spheroids. An example of one such study is shown
in Figure 5. In this assay, the antibody dependent cytotoxicity
(ADCC) of Herceptin on Her2 positive cells was assessed.

Her2 negative MCF-7 cells expressing nuclear-restricted RFP
(MCF7-NucLight Red) or Her 2 positive BT-474 cells expressing
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cytoplasmically-restricted green fluorescent protein (BT-474-
CytoGreen) were seeded in flat-bottom 96-well plates (1,000
cells/well) on a bed of Matrigel”.

Multi-spheroids were allowed to form over three days before
Herceptin was added in either the presence or absence of PBMCs
(5,000 cells/well, T:E ratio of 1:5). Over the following seven days,
brightfield and fluorescence images were used to monitor the
spheroids. Results demonstrate a concentration-dependent loss
of fluorescence in the presence of Herceptin in only the Her2
positive BT-474 cells and not the Her2 negative MCF-7 cells.

A loss of fluorescence intensity was seen in both cell types with
the addition of treatments activating the T-cell populations
(anti-CD3 and IL-2).
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In both single and
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ICK can be easily quantified.
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Figure 5: Impact of Herceptin-induced PBMCs on multi-spheroid proliferation. A. IncuCyte brightfield and fluorescence images taken at seven days (MCF7-

NucLight Red) or ten days (BT-474) show the effect of Herceptin on spheroid proliferation in the absence (top panel) and presence (bottom panel) of PBMCs.
The brightfield outline mask is shown in yellow. B. Time-courses show multi-spheroid death quantified as a loss of fluorescence intensity within the spheroid
brightfield object. Increased cytotoxicity was seen with the addition of treatments activating T-cell populations (anti-CD3 and IL-2). Data was collected over

ten days at six-hour intervals. Data shown as mean +/- SEM, n=4 wells.



Adapting to the evolving landscape
of immunology research

In the quest to better understand the process of ICK, scientists
are seeking deeper biological insights from more complex
translational models. The evidence we have presented so far
shows that live-cell analysis can easily be adapted to facilitate
this research. It is also likely that this technique will be applied
to newer models as the landscape of immunology research
continues to evolve.

Multicultures: Live-cell analysis could be used in multicultures
involving three or more cell types. Such models are likely to
be increasingly used in immuno-oncology research, given the
growing evidence for the important role of interactions with
stromal cells in tumorigenesis®. For scientists assessing ICK

in these complex models, live-cell analysis provides an ideal
solution as the technique can flexibly accommodate complex
culture models.

Another key translational approach is to incorporate patient-
derived material, such as biopsy tissue or CAR T cells, into ICK
assays. Again, live-cell analysis can easily be adapted to such
studies. Indeed, this method has already been successfully used
to develop and test new CAR T-cell constructs and assess their in
vitro activity'®™, and it could also prove useful in the comparison
of expansion and activity between batches for QC purposes. So
far, the use of live-cell analysis for CAR T-cell therapies is limited
to the preclinical stage, but clinical applications are likely to
develop as technology and instrumentation advances.

Immune cell infiltration: A further use for these assays could

be in assessing the invasion of immune cells into 3D structures.
This is a focus of interest in immuno-oncology, as the infiltration
of T lymphocytes into solid tumors is correlated with clinical
outcomes™. However, tumors employ many defense mechanisms
which can limit the migration of immune cells. Therefore, the
process of immune invasion is a developing area of research for
scientists investigating new therapeutic approaches. In fact,
this field is expanding fast, with the recent development of
novel 3D high-throughput assays to investigate immune cell
homing®. Given the flexibility of live-cell analysis in adapting to
3D models, it is likely that this method will play a key role in this
exciting avenue of research.



Conclusion

In this whitepaper, we have illustrated how live-cell analysis has
evolved to address the growing challenges of immuno-oncology
research. The introduction of enhanced data analytics, coupled
with the validation of this approach in more translational 3D
culture models, has enabled live-cell analysis to become a
flexible solution to meet the current and future requirements of
this field.

Essentially, the unique value of this method stems from its
capacity to maximize the amount of data gained from each
culture. There are two main reasons for this: firstly, signals

of interest will never be missed with real-time monitoring so
cultures will not be wasted; and secondly, scientists can now
increase the depth of information gathered from each sample
by using new metrics and analyses. In this way, researchers can
achieve a richer understanding of ICK without additional expense
in terms of time or material. This resource-efficiency is crucial
for translational models, which often incorporate more precious
and delicate cultures.

To gain even greater value from each experiment, it is possible
to couple live-cell analysis with other techniques. Since cells
are unperturbed throughout the course of the experiment,
researchers can remove supernatant samples, or alternatively
lift cells after the assay and analyze them with methods such as
flow cytometry. As such, scientists can maximize the biological
information gained from precious cultures.

Overall, the flexibility and multiplexing capacity of live-cell
analysis make this method a valuable solution to supplement
traditional ICK workflows, offering great potential to advance
immuno-oncology research and therapy discovery.
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