SARDRIUS

Simplifying Progress

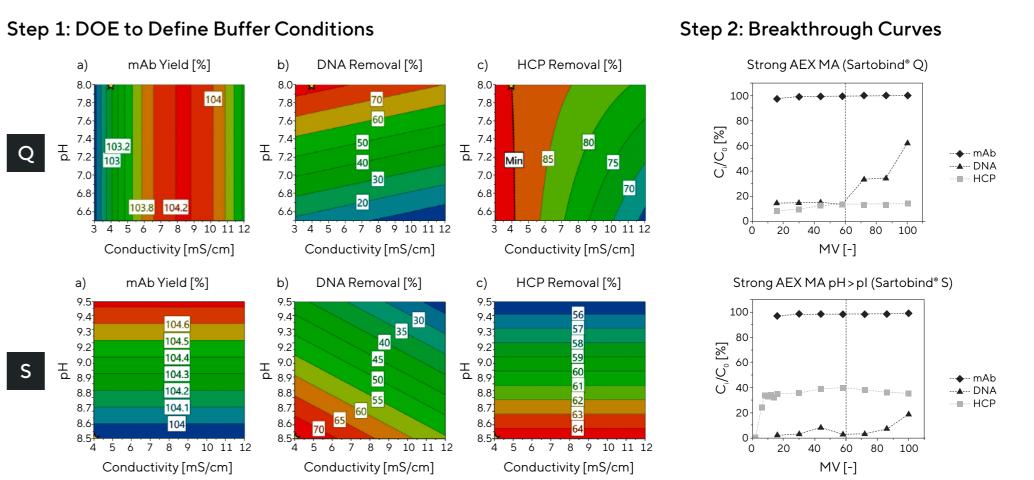
Intensification of mAb Processes Leveraging Sartobind[®] Rapid A and Full Connected Membrane-Based DSP

Fabien Rousset

Sartorius Stedim FMT S.A.S., Zone Industrielle les Paluds, 300 Avenue de la Fleuride, 13400 Aubagne, France Contact: Fabien.Rousset@sartorius.com

Introduction

In the field of mAb purification, high performances chromatography membranes that are ready-to-use, for "one-batch-one device" manufacturing strategy, take off. The newly Protein A capture technology "Sartobind" Rapid A", used in rapid cycling conditions, brings a 10-fold higher productivity (203 g/L vs 14 g/L with traditional resins), has similar performances for DBC, yield and HCP | hcDNA removal. This allows new-generation full membranebased purification platforms.


Polishing Protein A IEX

The first milestones to fully membrane-based process is achieved by implementing a competitive doubleflowthrough polishing process with connected Sartobind® Q and Sartobind® S. Comparable purity and yield are obtained (>98% for each flowthrough steps) with a strong footprint reduction of the purification process. The second step to a full membrane process is combining the Resolute® MCC multicolumn technology with protein A, AEX and CEX membranes in parallel batch mode. This results in increasing even more the productivity (>400 g/L/h) compared to a resin-based multi-column chromatography process (< 200 g/L/h).

This innovative Sartobind® Rapid A combined with process intensification solutions demonstrates that alternative mAb purification platforms are safer and highly competitive against classic resin-based approaches.

IEX Polishing

Double Flow-Through With Membrane Adsorbers²

IEX Polishing Protein A

Sartobind[®] Rapid A as Convecdiff Membrane vs Purely Convective | Diffusive Materials

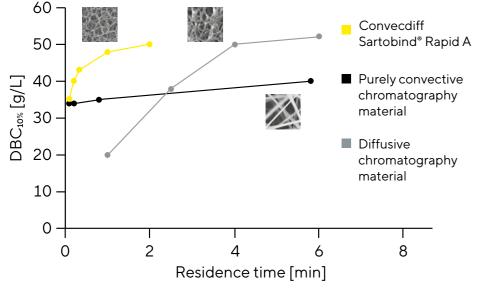
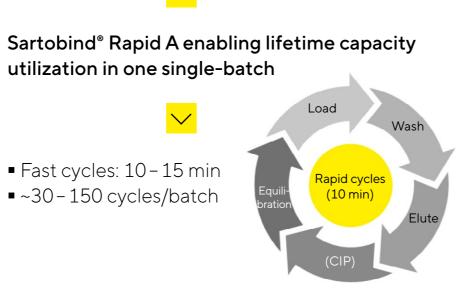



Figure 1: SDBC_{10%} As a Function of Residence Time for Commercially Available Materials and the Convecdiff Sartobind® Rapid A.

IEX Polishing

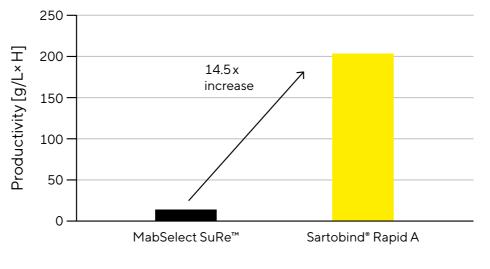
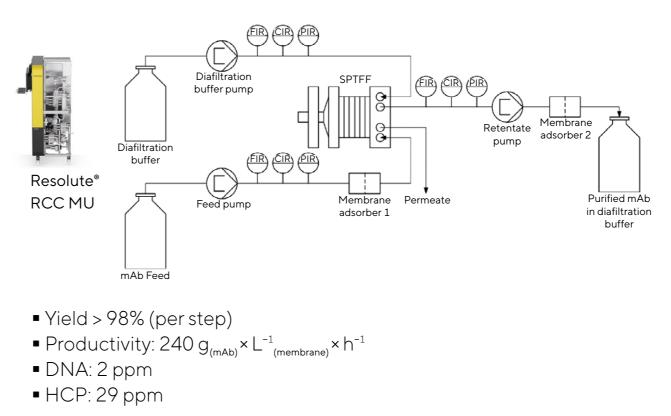
Convecdiff materials ally high DBC &

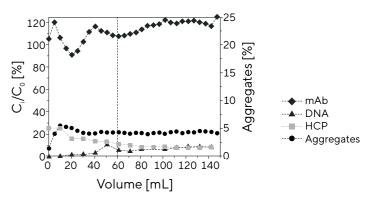
high flowrate to enable short cycle time

CPP and CQA of IgG Purified With Sartobind® Rapid A and Standard Resin¹

In this comparison, we show how Sartobind[®] Rapid A compares to standard protein A resin. Both materials were tested with the same feed material. The analyzed data show a very good comparability of Sartobind® Rapid A with the protein A resin. The membrane showed superior performance in DNA reduction and protein A leaching, with a 14.5-fold increase in productivity.

	Sartobind® Rapid A	Protein A Resin
DBC10% [g/L]	42.9±0.8	30.4±0.5
Residence time [min]	0.2	4.0
Yield [%]	94.7±0.2	96.4±0.4
HCP reduction [LRV]	2.2±0.2	2.3±0.1
hcDNA reduction [LRV]	2.9±0.2	2.3±0.1
Protein A leached [ppm]	2.7±0.7	6.7±0.3
av. Productivity [g/L*h]	203.6	14.1

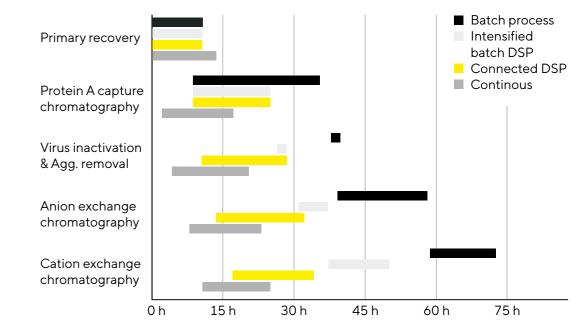




Figure 2: Productivity Comparison of HiTrap[®] MabSelect SuRe[™] to Sartobind[®] Rapid A Note. Sartobind Rapid A - Beta Test Opportunity. DOE done with MODDE® 13

IEX Polishing

Chromatography Membrane – Towards Connected Process²

Step 3: Connected Processing



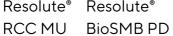
- Comparable purity with classical process
- No column packing
- Rapid Cycling Chromatography (RCC) enables strong footprint reduction Full single batch use

Protein A IEX Polishing

Downstream Intensification Reduces Processing Times

- Each step starts before the previous one ends
- This enables processing the sub-batches from protein A elution
- Reduction of intermediate tanks and chromatography columns' size
- Lower footprint
- Lower OPEX

IEX Polishing


The Power of Connected Membrane Processes

IEX Polishing

Levels of Intensification for Downstream Processing

Level 0	Û	Level 1	€⊙^↑	Level 2	ţıţ	Level 3	0000	Level 3.1	$\xrightarrow{\circ \mid}{\circ \mid}$
Standard batch, standalone UO		Intensified, sta UO increases to vidual step pro- higher cycling or MCC), impr buffer manage (ILD, ILC), high resins; pooling	the indi- oductivity; (RCC roved ement n DBC	Connected p at least 2 UO; steps started step is finishe could be stag batch; may ha tanks; softwa tration is ben be called clus linked proces	; subsequent before first od; gered ave pooling re orches- eficial; might stered or	more inter a connect steady sta only small (surge) tar orchestra	intermediate nks; software tion is a must ; run times;	Flow-through continuous p further integr with complete state flow. All elute steps ar with flow thro Molecule doe stop – ideally mediate (surg	rocess: ated case e steady bind and re replaced ough mode. es not no inter-

Resolute[®] **BioSC Pilot**

Abbreviations:

ASAP: Accelerated Seamless Antibodies Purification, EASY: Full flow-through process, ILC: Inline Conditioning, ILD: Inline dilution, MoBiDiK: Modular Bioproduction, disposable and continuous, MCC: Multi column chromatography, RCC: Rapid cycling Chromatography

Cascade	Resin (MCC Connected Process)	Sartobind®
Number of steps	3	3
Final yield [%]	83	86
DNA [ppb]	<3	<3
HCP [ppm]	3	30
HMW [%]	0.2	0.3
Total process time [h]	10.4	4.0
Av. Productivity [g/h]	179	465

Connecting the process and using MCC or parallel batch multiplies productivity or drops costs Comparable purity and yield Lower footprint

Sartobind[®] S (1.6 L @ 500 g/L)

Clarified harvest

 \checkmark

Sartobind[®] Rapid A (9.6 L @ 45 g/L)

3×3.2 L membrane

Conclusion

Due to inherent structural characteristics, Sartobind[®] Rapid A offers unique possibilities in the area of full membrane-based ultra fast mAb purification process

- Ready-to-use and One batch One device manufacturing strategy enabled thanks to Sartobind®
- DBC highly competitive
- Short cycle time (< 30 min)
- High number of cycles per batch (up to 150)
- Double Flow-Through polishing with Sartobind® Q | S
- Full membrane process with ultra high productivity— 3x compared to connected resin-based process
- Innovative agarose platform, scalable, robust for a wide variety of mAbs with limited back-pressure at large scale
- Availability of modular cassette format enables scaling to large production processes

2 F. Schmitz et al. (2023). Integrated double flow-through purification of monoclonal antibodies using membrane adsorbers and single-pass TFF. Biochemical Engineering Journal 195.

¹ Grünberg et al. (2022). Membranes.